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In pairwise end sequencing, sequences are deter-
mined from both ends of random subclones derived
from a DNA target. Sufficiently similar overlapping
end sequences are identified and grouped into contigs.
When a clone’s paired end sequences fall in different
contigs, the contigs are connected together to form
scaffolds. Increasingly, the goals of pairwise strategies
are large and highly repetitive genomic targets. Here,
we consider large-scale pairwise strategies that em-
ploy mixtures of subclone sizes. We explore the prop-
erties of scaffold formation within a hybrid theory/
simulation mathematical model of a genomic target
that contains many repeat families. Using this model,
we evaluate problems that may arise, such as falsely
linked end sequences (due either to random matches
or to homologous repeats) and scaffolds that termi-
nate without extending the full length of the target.
We illustrate our model with an exploration of a strat-
egy for sequencing the human genome. Our results
show that, for a strategy that generates 10-fold se-
quence coverage derived from the ends of clones rang-
ing in length from 2 to 150 kb, using an appropriate
rule for detecting overlaps, we expect few false links
while obtaining a single scaffold extending the length
of each chromosome. © 2000 Academic Press

INTRODUCTION

The defining feature of a pairwise end strategy is
that both ends of a large number of randomly selected
fragments (subclones) of the target genome are se-
quenced. Each sequence read from a subclone end, on
the order of 550 bp, is termed an “end sequence.” Once
determined, overlapping end sequences are identified
and assembled into contigs. The two reads in each pair
are in opposite orientation, and the distance between
them is known approximately. This information is used
to determine connections between contigs, resulting in
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“scaffolds,” which are maximally connected sets of con-
tigs. Scaffolds can be oriented and assigned to chromo-
some locations by combining pairwise strategies with
other mapping techniques, such as aligning contigs
along radiation hybrid, genetic, or cytogenetic maps.

The pairwise end-sequencing strategy was described
by Edwards and Caskey (1991), and variants of the
strategy have been developed by several groups (Chen
et al., 1993; Richards et al., 1994; Smith et al., 1994;

enter et al., 1996, 1998). Simulations and analysis by
oach et al. (1995) illustrated the feasibility of pairwise
trategies at low redundancies and demonstrated the
tility of combinations of subclone sizes for scaffold
uilding. Weber and Myers (1997) proposed to se-
uence the human genome with a “map-based” double-
arrel shotgun approach, similar to the strategy of
oach et al. (1995), but on a genomic scale and using
apped sequence-tagged sites (STSs) as an aid to as-

embly. The initiative by Venter et al. (1998) imple-
ents a variation of this proposal. Roughly 10-fold

otal sequence coverage will be obtained by sequencing
he ends of three sets of subclones, whose inserts av-
rage 2, 10, and 150 kb. The sequence redundancy (the
verage number of sequence reads covering a random
ase in the genome) and mapping redundancy (the
verage number of clone inserts that encompass a
iven base in the genome) provided by these three sets
f subclones are indicated in Table 1.
The pairwise end strategy differs from map-based

trategies (e.g., Blattner et al., 1997; Goffeau et al.,
996) for producing contiguous genomic sequence. In
ap-based strategies, a minimally overlapping “tiling”

ath of clones is first identified by any of a variety of
apping techniques, and each clone is sequenced sep-

rately. The pairwise end strategy eliminates the pre-
iminary mapping phase, which can be advantageous.
airwise end sequencing has been used successfully to
equence small genomic targets, such as microbial ge-
omes and large-insert subclones of large genomes
e.g., Edwards et al., 1990; Fleischmann et al., 1995;
raser et al., 1995). The 125-Mb Drosophila melano-
aster euchromatic genome has also been successfully
0888-7543/00 $35.00
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scaffolded (Myers et al., 2000). Despite these successes,
the feasibility of the strategy for large genomes has
been challenged (Green, 1997; Eichler, 1998). The
main criticisms and drawbacks of pairwise end se-
quencing stem from a lack of compartmentalization,
which would be provided by a clone-by-clone approach
(Green, 1997).

Pairwise end sequencing is likely to be a major strat-
egy for most large-scale sequencing projects in the fore-
seeable future. Target organisms include the human,
microbes, model vertebrates, and plants. Some of these
organisms have genomes that are larger than that of
the human and that contain complex repeat families.
Methods to predict the success of pairwise strategies on
target genomes are therefore needed. Success can be
measured in terms of (i) the (small) incidence of falsely
declared end-sequence overlaps, (ii) the (small) num-
ber and size of gaps in sequence coverage, and (iii) the
(large) length of the longest scaffold (i.e., does it extend
nearly the length of the target).

Myers and Weber (1997) have simulated aspects of
whole genome pairwise sequencing. Their simulations
assume that the only genome-wide repeats are SINES
and LINES and that these are all indistinguishable, so
they focus only on assembly of unique sequence. An
STS map of 100-kb resolution is also assumed, but no
data from paired BAC end sequences are utilized. They
conclude that, under these assumptions, a scaffold will
span adjacent STS markers over 99% of the time and
that, therefore, whole genome pairwise sequencing is
feasible.

Anson and Myers (1999) simulate algorithms for “in-
termarker assembly.” These simulations focus on as-
sembly of paired reads from short- and medium-length
inserts over 100-kb regions. Their simulations indicate
that piecewise assembly of the genome is possible with-
out testing all n(n 2 1)/2 comparisons of raw sequence
reads from the entire genome. These simulations also
indicate that assembly of unique sequence is possible
even under the constraint that all SINE and LINE
repeats are treated as identical. Their simulations are
limited, however, by allowing for the presence of only a
moderate number of longer low-copy-number repeats.
These proposed algorithms do not utilize any informa-
tion from paired BAC end sequences, which leaves
open the strong possibility that such information can
be leveraged to provide algorithms for complete
genomic assembly, including repeated regions.

TAB

Subclone Librar

Vector type Insert size (kb) Number of clon

High-copy plasmid 2 30,000,000
Low-copy plasmid 10 5,000,000
BAC 150 300,000

Total 35,300,000
Recently, a data set generator has been constructed
that permits nearly exact simulation of all parameters
of shotgun strategies (Myers, 1999). Computing power
exists to simulate entire strategies on these data sets
completely. Such simulations will complement theory,
and vice versa.

In this paper, we construct a tractable mathematical
model to capture the key properties of the pairwise
end-sequencing strategy, including the presence of
long uncharacterized low-copy-number repeats in the
target genome. We assume that information from all
paired sequences, including BAC ends, will be used for
scaffold assembly. We apply our model to predict the
outcome of the strategy when applied to the human
genome. Our mathematical model permits optimiza-
tion of certain parameters that are not easily optimized
with simulations.

We model the target, such as the human genome, as
a string of bases independently chosen from a given
nucleotide distribution. A variety of repeat families is
superimposed on these independent bases. Subclones
containing fragments of different size classes are as-
sumed to be located independently and uniformly at
random over the target. Sequences at each subclone
end are sequenced with a specified error rate. We de-
velop a decision rule for declaring an overlap between
two end sequences, based on the number of matching
and nonmatching bases when testing a potentially
overlapping alignment and using information about
identified repeat segments. False overlaps are counted
using a theoretical model that considers all possible
alignments of all pairs of end sequences, while the size
of scaffolds is obtained by using only the true declared
overlaps.

We use the theoretical model to derive the probabil-
ity, as a function of the decision rule, of detecting a true
overlap as well as the expected number of falsely de-
clared end-sequence overlaps. False overlaps can be
due to random similarity or can be a result of both
sequences overlapping members of a repeat family.
The simulation model then places repeat segments and
subclones randomly over the target and declares over-
lap of adjacent end-sequence pairs according to the
probabilities derived by the theoretical model. Contigs
of declared end sequences are linked by subclones to
form scaffolds, whose properties are evaluated.

In the following, we present our notation and as-
sumptions in detail and then outline calculations for

1

Characteristics

Number of sequences

Coverage

Sequences Clones

60,000,000 8.6 17
10,000,000 1.4 14

600,000 0.1 13
70,600,000 10 44
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239WHOLE GENOME SHOTGUN SEQUENCING
the theoretical and the simulation models. Results for
sequencing on the scale of the human genome then
follow.

METHODS

Notation, Assumptions, and Theoretical Results for
True and False Overlap Declaration

We now outline model specifications for the target size, subclone
library characteristics, end-sequence length, the rule for declaring
end-sequence overlap, the probability distribution for randomness of
nucleotides, sequencing-error rates, and repeat families. We also
derive theoretical formulae for true and false overlaps, specifically:
(i) the probability that two overlapping end sequences will be (cor-
rectly) declared to overlap, (ii) the expected number of falsely de-
clared overlaps that would be found by random coincidence, and (iii)
the expected number of false overlaps due to repeat-family homology.

● Target and library specifications are denoted as follows:
● T is the length of the genomic target in basepairs. For the

uman genome, T is 3.5 3 109.
● u denotes the number of subclone groups. Within a subclone

group, all subclones are modeled as having a fixed length. For the
strategy modeled here, u 5 3.

● Ci is the clone insert length in basepairs for the ith group of
subclones, with i 5 1, . . . , u.

● Ni is the number of subclones from group i to be analyzed to
form the library of end sequences. The Ni clones of length Ci are
assumed to be randomly and independently located along the target.

● End-sequence number, length, and decision rule are specified as
ollows:

● n 5 2 ¥i51
u Ni is the number of end sequences.

● m is the number of bases that define an end sequence at each
end of each subclone, corresponding to the sequencing read length.

● We use a compound decision rule for declaring overlap of two
nd sequences, with respect to a proposed alignment, where the
ecision depends upon whether or not there are known repeat seg-
ents. This rule is to be used in the core phase of an assembly when

ll reads are being compared to all other reads. The rule proceeds as
ollows:

● If the overlap region includes at least 50 bp of contiguous
nown repeat sequence, then:

● If all such repeat sequence is in alignment and there is also
t least 50 bp of aligned contiguous unique sequence, then overlap is
eclared (because the combination of substantial unique sequence
greement with one or more aligned repeat segments essentially
uarantees true overlap).

● Otherwise overlap is not declared (because either the over-
lap region occurs entirely or almost entirely within a repeat segment
or the alignment is insufficient).

● Otherwise (i.e., in the absence of known repeat homology) we
se the function k( j) to specify the rule used to decide overlap, j 5

1, . . . , m. If the two end sequences are aligned so that each has j
bases in the overlap region, and if more than k( j) of these bases are
read as identical, they will be declared to overlap. While this model
includes only substitution errors in the equations, our high chosen
error rate is intended to account for both substitution and indel
errors, approximating the indels as substitutions.

● Nucleotides are assumed to be drawn from the following proba-
ility distribution:

● aA, aC, aG, and aT specify the probabilities of choosing each
ase at random (so that aA 1 aC 1 aG 1 aT 5 1). We assume that the
arget consists of independently selected random bases from this
istribution with interspersed repeats.

● a 5 aA
2 1 aC

2 1 aG
2 1 aT

2 is then the probability that two
independently selected bases are identical by coincidence.

● Errors in sequencing clone ends are modeled as follows:
● e denotes the sequencing problem rate (which will be used to
define the observed error rate). We assume that bases are read
independently. A base is read initially correctly with probability 1 2
e. With probability e, the reading is instead an independently sam-
pled random base (with distribution specified by aA, aC, aG, and aT)
that may, by coincidence, be the correct base.

● e* denotes the sequencing error rate, i.e., the probability that
a given base has been read incorrectly. Note that e* 5 e(1 2 a), so
hat the observed error rate is less than the problem rate e.

● Probabilities and frequencies of true and false overlaps are as
ollows:

● ptrue( j) denotes the probability that two end sequences that
overlap by j basepairs will be (correctly) declared to overlap. We may
write (following Theorem 4 of Siegel et al., 1999)

p true~ j! 5 B 1@ j, k~ j!, a 1 ~1 2 e! 2~1 2 a!#, [1]

here B1 denotes the following upper cumulative binomial probabil-
ity

B 1~ j, k, p! 5 P~X j . k! 5 O
i5k11

j S j
i D p i~1 2 p! j2i, [2]

here Xj has a binomial distribution with j trials and probability p of
success on each trial.

● lfalse denotes the expected number of false overlaps (not due to
repeat homology, which is considered separately) that would be
obtained if all false alignments of all pairs of end-sequences were
examined and may be computed conservatively as follows. The ran-
dom number of false overlaps is the sum (over all end sequence pairs,
not necessarily from the same subclone) of the sum (over all possible
alignments of such a pair of end sequences) of the indicator function
that two random end sequences with this alignment will be declared
to overlap. An extra factor of 2 is due to the fact that the two end
sequences might have initially come from complementary strands.
The expected number of false overlaps is then twice the number
n(n 2 1)/2 of end sequence pairs times the sum (over all possible
lignments) of the probability that two end sequences evaluated at
his alignment will be declared to overlap

l false 5 n~n 2 1! O
i51

2m21

B 1$i 2 2~i 2 m!1, k@i 2 2~i 2 m!1#, a%, [3]

where “positive part” notation x1 is defined to be x if x . 0 and 0
otherwise. Note that lfalse is a slight overcount of the number of
alsely declared overlaps because we have not excluded true align-
ents from the calculation.
● Each simple repeat family is modeled as a group of randomly

ispersed segments with similar sequences, with these segments
onditionally independent given a family-prototype segment. This
pecification model expresses both similarity and randomness in a
ractable manner. For family f (where f 5 1, . . . , f), where f denotes

the number of families, we define the following:
● Lf is the length, in bases, of each segment of the family. For

example, for MIR repeats, Lf is 260.
● Rf is the number of segments in the family. For example, with

MIR repeats, Rf is 11,000. We will also allow random Rf from a
known probability distribution. Allowing a random Rf permits the

odeling of repeat families with approximately known or unknown
umbers of members.

● We assume that each family has a prototype segment (not
ecessarily present in the genome) consisting of Lf bases selected

independently at random from the aA, aC, aG, aT distribution. For
ractability, we ignore any deviations in the GC content of repeats
rom the genomic average.

● ef is the problem rate for family f (using the same terminology
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240 SIEGEL ET AL.
as earlier, even though these are not really “problems”). We assume
that each segment’s bases are independently determined. A base is
identical to the homologous prototype base with probability 1 2 ef.
With probability ef, the base is instead an independently sampled
random base (with distribution specified by aA, aC, aG, and aT) that

ay, by coincidence, be the same base as in the prototype.
● e*f is the difference rate for family f, i.e., the probability that a

iven base in one segment differs from the homologous base in
nother segment from the same family. Relationships are e*f 5 [1 2
1 2 ef)2](1 2 a) and ef 5 1 2 =1 2 e*f/(1 2 a), because differences can

occur whenever either or both segments differ from the prototype.
The mean similarity of a family is 1 2 e*f.

● pf denotes the probability that two homologous bases within
amily f will be read as identical. Taking account of reading errors,

we may write (following Theorem 6 of Siegel et al., 1999):

p f 5 a 1 ~1 2 e f!
2~1 2 e! 2~1 2 a!. [4]

● lfamily,false denotes the expected number of false overlaps de-
clared due to unidentified repeat-family homology, which can happen
when two end sequences contain a homologous, but not a true,
overlap. Identified repeat families are treated separately in the de-
cision rule, which automatically rejects overlap declaration within
known repeat regions. The total expected number of false overlaps
due to unidentified homology will be found by summing the rate of
false overlaps over all families

l family,false 5 O
f51

f

l f,false, [5]

where formulas for lf,false in two cases are now developed.
● First consider unidentified families where the size Lf of the

segment is large compared to the size m of the end sequence. In this
case, for tractability, we will deal conservatively with edge effects by
computing as though each end sequence that overlaps a segment is
entirely within it. To count the number of such false overlaps, ex-
press it as the sum [over all Rf(Rf 2 1)/2 pairs of segments] of the
um (over the number of end sequences overlapping the first segment
f the pair) of the sum (over the number of end sequences overlap-
ing the second segment of the pair and homologously overlapping
he first end sequence) of the indicator function that these two end
equences are declared to overlap. The expected number of false
atches, if Lf @ m, is therefore

l f,false 5 SR f ~R f 2 1!

2 DSL f 1 m 2 1
T 2 m 1 1 nDS n 2 1

T 2 m 1 1D
3 O

i51

2m21

B 1$i 2 2~i 2 m!1, k@i 2 2~i 2 m!1#, p f %. [6]

ote that if a repeat family has a random number of segments Rf, we
ay count the expected number of false overlaps by using the ex-

ected value E{[Rf(Rf 2 1)]/2} in place of the first term in Eq. [6].
Similarly, we may use the mean value if Lf is random and uncorre-
lated with Rf.

● Next, consider unidentified families for which Lf , m. Com-
uting lf,false becomes more complex because convolutions of binomial

distributions must be considered to assess a proposed overlap that
includes some homologous bases and some random bases. Theorem 1
in Appendix A derives an upper bound on lf,false for the case in which
Lf , m.

● Each compound repeat family is modeled as two interacting
ubfamilies, called types A and B. Each subfamily is a simple repeat
amily characterized by a difference rate that applies when compar-
ng two segments within that subfamily. In addition, a difference
ate may be specified for use when comparing a segment of type A to
segment of type B within the same compound repeat family. This
odel represents repeat families that have evolved with periodic
eeding resulting in a subfamily structure. Such families include
oth the Alu and the LINE families. For unidentified compound
epeat families (recall that identified families are considered directly
n the decision rule), in addition to using Eqs. [6] and [8] to count
alse matches within each subfamily, we can change the term Rf(Rf 2

1)/2 in these equations to Rf,ARf,B (the product of the number of
segments in each subfamily, representing the number of homologous
comparisons) to count false matches due to interaction within the
compound family. Modification of Eq. [9] would be more complex.

● We can now, as our final theoretical goal, specify the particular
unctional form used for the decision rule k( j) that is used in the
bsence of identified repeat homology

k~j! 5 int$min@j, jpmax 1 g Îjpmax~1 2 pmax!#%, [7]

here “int” is the integer part function, pmax 5 maxf51, . . . ,f pf, and g is
a parameter that can be used to control the probability of declaring
overlap. The functional form is motivated by a family of one-sided
statistical hypothesis tests with type I error controlled by g, with the

ull hypothesis corresponding to the maximum repeat family simi-
arity and with the research hypothesis representing identical bases
bserved with reading errors. This decision rule is set at g standard
eviations above the mean of the binomially distributed “number of
ligned bases read as identical” for the repeat family with the most
imilarity. This stringency protects against falsely declaring uniden-
ified homology as overlap.

The Simulation Model for Scaffold Size

A computer-simulation model was developed to study the proper-
ties of scaffolds constructed from true, declared end-sequence over-
laps. We simulated random subclone locations chosen along a con-
nected portion of the target (e.g., a chromosome) and the resulting
linkage of end sequences into contigs and scaffolds. False overlaps
(whether due to homology or not) were not considered within the
simulation model for three reasons: (i) the occurrence of such false
overlaps has already been accounted for and controlled by the theo-
retical model (and, by adjusting g, may be set at less than one
expected false overlap in the entire genome), (ii) if false overlaps
were added to the simulation, the resulting scaffolds could not be
smaller, and (iii) assembly algorithms are highly likely to identify
and remove false overlaps by recognizing topological inconsistencies
and identifying mismatches either by correlating multiple paired
sequences or identifying inconsistencies in multiple alignments.
Since our model labels a potential overlap as false based solely on an
isolated comparison of two reads (in the absence of known repeat
homology), a project with 10-fold sequencing redundancy is highly
likely to be able to resolve such false overlaps by considering multiple
alignments.

Each trial of the simulation model proceeds as follows:

1. Repeat segment locations are chosen uniformly at random
within a chromosome of the target, representing the identified repeat
families, subject to the constraint that they not overlap one another
and reflecting the rates of occurrence of each family.

2. Subclone locations are randomly selected, subject to constraints
relating to the insert size of each subclone group.

3. End sequences are identified and sorted by left end point.
4. Contigs are formed. Beginning with the leftmost end sequence,

each sequence is tested independently to see if it is declared to
overlap the sequence to its right, using the decision rule identified
earlier (so that overlaps entirely within known repeat families are
rejected, but overlaps with sufficient known repeat alignment and
unique sequence alignment are accepted). In the absence of known
repeat homology, this test is performed using the binomial condi-
tional probability ptrue( j) of detecting an overlap given the true size j
f the overlap (if any) in basepairs. Note that this procedure is
onservative because only immediate overlaps are considered. If an
verlap of two neighboring end sequences is not declared, then a gap
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is considered to exist even if the next end sequence would be declared
to overlap them both.

5. Scaffolds are identified by considering the connections among
contigs implied by paired subclone ends.

RESULTS

Sequencing on the Scale of the Human Genome

We investigated the properties of the end-sequence
strategy for sequencing a target of length T 5 3.5 Gb,
using libraries of subclones of three lengths, as shown
in Table 1, and end sequences of length m 5 550. These
libraries therefore cover the target to 10-fold sequenc-
ing redundancy and 44-fold mapping redundancy. The
choices of parameters in this example are intended to
model the human genomic project proposed by Venter
et al. (1998). Our theory can also be applied to lower
redundancy projects. We set the base distribution to
aA 5 aT 5 30% and aC 5 aG 5 20%. Sequencing errors
were assumed to occur e* 5 1.5% of the time. These
sequencing-error rates are higher than is typical for
errors in single reads, but were chosen to improve
robustness of the results to polymorphism, as sub-
clones from different haplotypes will be included in
data for the Human Genome Project. By comparison,
the sequencing error rate in the Drosophila project was
0.5% for an average read length of 551 bp (Myers et al.,
2000).

We included eight nominal repeat families with
mean similarity of 85 and 95%, with characteristics as
shown in Table 2. We omitted families with mean
similarity below 85%, as these are not likely to result in
false declared overlaps. The families in Table 2 model
the repeat families in the human genome (Smit, 1999,
and references below). Where a range is given, a value
is chosen uniformly for each family (for example, there
are 50 DNA transposon families, each one with 70
segments of identical length chosen from the uniform
distribution from 80 to 3000 bp). Some of these families
are assumed to be identified during contig assembly, as

TAB

Repeat Family Character

Name Families Bases (L

Alu 1 320
MIR 1 260
LINE1 1 Exponential with m
LTR element 75 4,000 to 12,000

LTR, isolated 75b
10% of correspond
element length

DNA transposon 50 80 to 3,000
Highly similar blocks 200 1,000 to 40,000
Moderately similar blocks 200 1,000 to 40,000

a Within a subfamily the mean similarity is 85% for two segments o
cross subfamilies within a family is 85%. Similarities are binomiall
reater than 99% similarity. Characteristics of interspersed repeats

b Each isolated LTR family is paired with a LTR element family a
indicated in Table 2. For unidentified families, our
model presumes a worst-case situation in which re-
peats are not masked.

LINE1 family members are usually present as trun-
cated forms in the genome, and they are modeled here
as with length chosen as independent exponential ran-
dom variables each with mean segment length 1000 bp
and in register at one end.

LTR-element families are bounded on both ends by
LTRs. In addition to LTR-element family members,
there are many isolated LTRs in the genome (Smit,
1999). We model 75 LTR element families, with each
family modeled as a compound repeat family with con-
stant segment length drawn from the uniform distri-
bution. Each of the 75 LTR-element families is paired
with a set of isolated LTRs with segment length equal
to 10% of the LTR-element length.

Because the DNA transposon families are not as-
sumed to be identified, we compute the number of
expected false matches using Eq. [6] and the mean
segment length Lf 5 1,540, which results in less than
one false overlap expected for all 50 such families (the
computed number of false overlaps is 0.002 using g 5 3
in the decision rule).

In addition, there are a number of highly similar
blocks in the human genome. These include pericen-
tromeric and subtelomeric paralogous duplications (re-
viewed in Eichler, 1998; Trask et al., 1998a), multigene
families such as the olfactory receptor family, and
small blocks of the antigen receptor families (Trask et
al., 1998b; Hood et al., 1995), as well as less-well-
characterized blocks. Within the moderately similar
gene and homology-block families, we model 200 fam-
ilies, which are not assumed to be identified during
assembly, using the mean segment length of 20,500 bp
for Lf in Eq. [6]. In addition, because the number of
segments per family varies, we replaced the term
Rf(Rf 2 1)/2 in Eq. [6] with its expectation 155 derived

hen Rf has a uniform discrete distribution from 2 to

2

ics Used in Calculations

Segments in each subfamilya

Assumed
identified?Type A: (Rf,A) Type B: (Rf,B)

678,000 273,000 Yes
11,000 0 Yes

n 1,000 52,000 64,000 Yes
25 5 Yes

LTR
500 100 Yes
70 0 No
0 2 to 30 Yes

2 to 30 0 No

pe A and is 95% for two segments of type B. The mean AB similarity
istributed: for example, there are 2,628,203 Alu pairs expected with
e modeled on Smit (1999).
has homology with both ends of the LTR elements.
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30. Use of both adjustments simultaneously (length
per segment and number of segments) may be justified
by assuming that the length and the number of seg-
ments are uncorrelated. The result from Eq. [6] is that
less than one false overlap is expected for all 200 mod-
erately similar block families (the computed number of
false overlaps is 0.006 using g 5 3 in the decision rule).

Overall, less than one falsely declared overlap, on
average, was found to occur in the entire 3.5-Gb
project, according to the theoretical model, with the
choice g 5 3 to specify the overlap decision rule in Eq.
[7]. Using this rule, the probability of detecting a true
overlap varies as a function of the length of aligned
overlap being tested (Fig. 1). Adjacent end sequences
are likely, but not guaranteed, to be declared to over-
lap. For a given end sequence not involving identified
repeat homology, the probability that the first true
overlap (in a given direction) is detected is 0.927.

We simulated scaffold formation 100 times in a
250-Mb chromosomally sized target (human chromo-
somes vary from ;50 to ;250 Mb). Of these 100 sim-
ulations, in 99 cases there was a single main scaffold
across the entire chromosome, while in the single re-
maining case there were two main scaffolds (one cov-
ering 89% of the chromosome, the other covering 11%)
that overlapped each other but did not connect within
a local region with multiple blocks of repeat-segment
homology. After following our initial assembly algo-
rithm, relying mostly on all pairwise comparisons, it is
expected that one would reexamine missed true over-
laps. It is likely that these missed overlaps will then be
detected within the context of the much simpler prob-
lem of linking a small number of scaffolds. For this
reason, the two main scaffolds of this one simulation
would be merged, and a single main scaffold would be
found in all 100 simulations.

Averaging over the 100 simulations, we found that
97.5% of all end sequences were in the main scaffold,
which included 99.0% of all bases in the target and left
2730 actual sequence-mapped gaps across the chromo-
some.

FIG. 1. The probability of detecting a true overlap (choosing g 5
.0 to keep the expected number of false overlaps well below one for
he entire genome) as a function of the size of the aligned overlap
eing tested. Because ends occur about every 50 bp, adjacent ends
ill overlap by about 500 bp and are likely to be detected. Disconti-
uities are due to the discrete nature of the decision function k.
Sequencing the Drosophila Genome

We modeled scaffold formation and false matches for
the Drosophila Genomic Project, choosing parameter
values to match those implemented by Adams et al.
(2000). This genome has a high percentage of highly
similar repeat families and is smaller than the human
genome. We investigated the properties of the end-
sequence strategy on a target genome of length T 5 125
Mb, using libraries of subclones of three lengths, with
end sequences of length m 5 551. We set the base
distribution to aA 5 aT 5 28.8% and aC 5 aG 5 21.2%.

equencing errors were assumed to occur at rate e* 5
0.5%. We included 100 repeat families, half identified
and half not identified, of varying lengths with varying
numbers of segments and similarity. We adjusted the
decision rule g to obtain less than one false match for
the unidentified homologous families across the entire
genome. Scaffold simulation created repeat segments
for the identified families for a target chromosome arm
of size 30 Mb and found a single scaffold across nearly
the target chromosome arm in 99 of 100 simulations,
with one simulation needing two overlapping scaffolds
(covering 59.6 and 40.6% of the target chromosome
arm) that failed to connect across a repeat-rich region
using our conservative overlap detection rules. Aver-
aging across all 100 simulations (and merging the two
main scaffolds in one simulation), we find that scaf-
folds cover 99.997% of the target chromosome arm from
start to finish, including 99.94% of all bases with 102
actual sequence-mapped gaps.

DISCUSSION

We have presented a hybrid theory/simulation model
for analyzing genomic sequencing performed with a
pairwise end-sequencing strategy. Our theoretical
model derives the expected number of falsely linked
clone ends due to random coincidence and unidentified
homology, while our simulation model shows how the
true detected overlaps form contigs and scaffolds.
Within the context of our model, library parameters
may be changed to study their effect on false overlaps
and on scaffold size. Using this model, various param-
eters—such as the number of end sequences deter-
mined, the average insert size, the overlap decision
rule, the costs of various steps in the procedure—can
be varied to assess the effect on overall costs or success
of the approach. We anticipate that the flexibility of our
mathematical model will permit it to be used generally
to optimize parameters not only for the Human Ge-
nome Project, but also for future genome sequencing
projects. Furthermore, our model is capable of guiding
the refinement and development of assembly algo-
rithms.

Our results are not tied to a particular assembly
algorithm. We model and simulate the sequence of the
target genome and the sequence and locations of sub-
clones. We then infer that assembly algorithms with
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certain characteristics will produce scaffolds spanning
this target genome. Our model assumes that algo-
rithms will be able to recognize the presence of misla-
beled clones. With sufficient data, most algorithms will
be able to exclude such clones based on an excess of
contradicting correct data. Furthermore, as is standard
and necessary for modeling genome strategies, we do
not model unclonable (or difficult to clone) regions;
each of these regions is likely to cause a break in the
continuity of a scaffold. Centromeres are examples of
such regions.

Our theoretical calculations find an upper bound on
the rate of occurrence of false matches under the as-
sumption that an all-by-all comparison is performed on
raw sequence reads. In some cases, this task could be
computationally slow. However, a number of computa-
tional approaches are likely to make such comparisons
feasible even on very large data sets. These include
hashing and sorting techniques, binning based on ex-
ternal mapping data, and phased merging of raw reads
into high-confidence contigs. In the presence of such
computational refinements, our results continue to
provide an upper bound on the false-match rate.

Myers et al. (2000) provide the results of a particular
ssembly algorithm for the Drosophila genome. In this

assembly, the four Drosophila chromosomes gel into 6
to 25 major scaffolds, with the gaps between these
scaffolds occurring near centromeres and telomeres, as
expected for unclonable regions. The results of the
Drosophila Genome Project conform to the predictions
of our model, and vice versa. The coverage in sequence
reads and clone lengths for this project are analogous
to the parameters of the Human Genome Project that
we have modeled.

Based on our model, we conclude that, with careful
choice of the overlap decision rule, a 3.5-Gb target,
such as the human genome, with repeat families hav-
ing mean similarity of 85 and 95% (and many pairs
with much greater similarities), may be successfully
sequenced using a sequencing redundancy of about
10-fold. Success is here defined as producing a single
scaffold across each of the human chromosomes, with
more than 99% of the genome covered in assembled
contigs. This result provides independent confirmation
of the results of other simulation models for human
whole genome shotgunning (e.g., Weber and Myers,
1997).

The cost of a pairwise project is, to a first approxi-
mation, the cost of raw sequence read production. The
rate of a pairwise project is, to a first approximation,
proportional to the rate of raw sequence read produc-
tion. If scaffolds are computed continuously with the
production of raw data, gelling of small scaffolds into
large scaffolds tends to occur during a short period of
sequence production. The redundancy at which this
occurs is currently predictable only by simulation
(Roach et al., 1995; Roach, 1998). At this redundancy,
projects can be described as undergoing a phase tran-
sition from a state of many small scaffolds to a state of
one or few large scaffolds.

Assembly problems arise almost exclusively from the
presence of repeat families in the genome. The severity
of these problems is directly related to the degree of
similarity, the copy number of each given family, and
the sequencing error rate. For this paper, we have
attempted to model the repeat families of the human
genome as reasonably as possible. However, our knowl-
edge of repeat families is still incomplete. We have
chosen our assumptions to be conservative, so our
model will tend to predict an upper bound on errors.
One source of our conservatism lies in our consider-
ation of only adjacent reads for establishing contig
connectivity. Actual algorithms employ overlapping
sets of reads to resolve ambiguity and thus will be able
to resolve many of the errors that we predict. We as-
sume that most repeats can be identified before or
during all-by-all comparisons of sequence reads. This
task is usually accomplished by comparing sequences
to known repeat families, such as with the program
RepeatMasker (A. Smit, San Diego, CA, pers. comm.,
1999). Previously uncharacterized repeats may also be
identified by statistical consideration of the number of
expected reads over a given region.

Assembly problems due to repeats are not unique to
pairwise shotgun sequencing. All random subcloning
strategies are susceptible to confoundment by repeats.
In general, a repeat longer than the length of an effec-
tive mapping unit may represent an insurmountable
problem if the repeat is of sufficiently high similarity
relative to the sequencing error rate. For traditional
shotgun sequencing, the mapping unit is the length of
a sequence read. For pairwise end sequencing, the
mapping unit is the length of the subclone. This feature
drives the motivation for choosing clones of varying
lengths, which allows one to circumvent regions of the
lengths of all the genomic repeat families (Roach et al.,
1995). This is a major distinction between pairwise end
sequencing and traditional shotgun sequencing.

Aside from their utility in resolving repeats, the use
of subclones of longer lengths is also critical for closure.
Mapping redundancy is the most important factor driv-
ing the coalescence of contigs into a single scaffold per
chromosome (Roach et al., 1995). Plasmid end se-
uences provide little mapping redundancy, but are
he most economical and accurate contribution to se-
uencing redundancy. Therefore, to avoid gaps in sub-
lone coverage of the target, there is a need for longer
lones. The addition of BAC end sequences provides an
xcess of mapping redundancy. Intermediate length
ubclones contribute to both mapping and sequencing
edundancy and also facilitate certain computations
nvolved in scaffold assembly.

Our analysis predicts that whole-genome pairwise end
trategies can yield extensive sequence coverage of the
uman genome, assuming that the subclone inserts are
andom. Pairwise end sequencing is cost-effective, in that
t eliminates the need to precede sequencing with a map-



w
i
o

a
a

244 SIEGEL ET AL.
ping phase. Producing high-quality, random subclone li-
braries is the main up-front cost. Following this, se-
quence generation is automatable. For the human
genome, much of the necessary sequencing is complete:
over 800,000 sequences from the ends of human BAC
clones are available (http://www.ornl.gov/meetings/
bacpac) as are a substantial number of sequences from
smaller clones (see Smaglik and Butler, 2000).

APPENDIX A

Theorem 1. For an unidentified homologous family
f with Rf segments each of length Lf for which Lf , m,
an upper bound on the expected number lf,false of false
overlaps due to homology may be computed as the sum
of the two equations

n~n 2 1!R f ~R f 2 1!

2~T 2 m 1 1! 2 $2 O
i51

Lf O
j51

Lf

convolutef @min~i, j!,

m 2 max~i, j!, k~m 2 ui 2 ju!#

1 4 O
i51

Lf O
j5Lf11

m21

convolutef@i, m 2 j, k~m 1 i 2 j!#

1 2 O
i51

Lf O
j5m

m1i21

B 1@m 1 i 2 j, k~m 1 i 2 j!, p f#

1 O
i5Lf 11

m21 O
j5Lf 11

m21

convolutef @L f , m 2 ui 2 ju 2 L f ,

k~m 2 ui 2 ju!#} [8]

1
n~n 2 1!R f

2~R f 2 1! 2

2~T 2 L f 1 1! 2~T 2 m 1 1! 2

3 O
d50

m22 O
i51

m2d21 O
j51

m2d21

convolutef $min@L f ,

m 2 d 2 max~i, j!#

1 min~L f , i, j!, m 2 ui 2 ju 2 min@L f , m 2 d

2 max~i, j!# 2 min~L f , i, j!, k~m 2 ui 2 ju!%,
[9]

here the convolution function is defined as the follow-
ng upper cumulative distribution function of the sum
f two binomial distributions, Xj,f based on homologous-

base matches and Xr based upon random matches

convolutef ~ j, r, k! 5 P~X j,f 1 X r . k!

5 O
i5~k2r!1

j

b~ j, i, p f!B 1~r, k 2 i, a! [10]
and where the binomial probability b is defined as

b~ j, i, p! 5 S j
i Dp i~1 2 p! j2i. [11]

Proof. Equation [8] represents the expected num-
ber of homologous overlaps involving two end se-
quences whose overlap region includes a single repeat
segment, computed as the expected value of the sum
(over all repeat-segment pairs) of the sum (over all
end-sequence pairs) of the sum (over all placements of
each end sequence to overlap its repeat segment) of the
indicator function that a false overlap is declared due
to homology. The first two of these sums are repre-
sented in the initial multiplier, which counts the num-
ber of ways two end sequences can each be associated
with a different repeat segment, then multiplies by the
probability 1/(T 2 m 1 1)2 that each end sequence falls
randomly at a particular location of its repeat segment.
The four individual double summations represent the
four possible overlap configurations: Case 1: both end
sequences have an end point in their respective repeat
segments and either both end points are 59 ends or both
re 39 ends (factor of 2 is because there are two possible
ssignments of end sequences to 59/39 ends). Case 2:

one end sequence has an end point in its repeat seg-
ment, while the other has both end points outside of
(therefore completely containing) its repeat segment
(the factor of 4 is because either end sequence could
have its end point in its repeat segment, and this end
point could be either 59 or 39). Case 3: both end se-
quences have an end point in their respective repeat
segments but one end point is 59 and the other is 39
(hence the factor of 2). Case 4: both end sequences have
both end points outside of (therefore completely con-
taining) their respective repeat segments. In each of
these four cases, the summations extend over all place-
ments of end sequences overlapping repeat segments.
The probabilities being summed in each case represent
the likelihood of falsely declaring an overlap when the
end sequences are aligned to match the homologous
repeat segment region [for which two bases will be read
as identical with probability pf 5 a 1 (1 2 ef)

2(1 2
e)2(1 2 a)]. Note that the nonhomologous portion (if
any) of the overlap being tested will have two bases
read as identical with probability a.

Equation [9] represents the expected number of ho-
mologous overlaps involving two end sequences whose
overlap region includes part of two repeat segment
sequences, each separated by d unique-sequence bases,
as shown in Fig. 2. This expectation is computed as the
expected value of the sum (over all pairs of ordered
repeat-segment pairs with exactly d unique-sequence
bases in between) of the sum (over all end-sequence
pairs) of the sum (over all placements of each end
sequence to overlap its repeat-segment pair) of the
indicator function that a false overlap is declared due
to homology. The first two of these sums are repre-
sented in the initial multiplier, which counts the ex-
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pected number of ways two end sequences can each be
associated with a different repeat-segment pair, then
multiplies by the probability 1/(T 2 m 1 1)2 that each
end sequence falls randomly at a particular location of
its repeat-segment pair [note that if the number of
repeat-segment pairs separated by d bases has a Pois-
son distribution with mean l 5 Rf(Rf 2 1)/(T 2 Lf 1 1),
then the expected number of pairs of such repeat-
segment pairs is l2/2]. The triple sum extends over all
possible repeat-segment-pair separations d, as well as
placements of the two end sequences on their respec-
tive repeat-segment pairs.

The result is an upper bound because an end se-
quence that overlaps two repeat segments will be
counted separately for each of these two repeat seg-
ments in Eq. [8] and because two end sequences that
each overlap two repeat segments may be counted in
both [8] and [9]. h
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