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1 Introduction

A genetic mapping project, typically implemented dur-
ing a search for genes responsible for a disease, requires
the acquisition of a set of data from each of a large num-
ber of individuals. This data set includes the values of
multiple genetic markers. These genetic markers occur
at discrete positions along the genome, which is a col-
lection of one or more linear chromosomes. Typing the
value of a marker in an individual carries a cost; one
seeks to minimize the number of markers typed without
excessively jeopardizing the probability of detecting an
association between a marker and a disease phenotype.

The probability of detecting an association between a
marker and a disease phenotype decreases with distance
between the marker and the actual position of the gene
responsible for the phenotype. Thus, one can maximize
the probability of detecting disease linkage by choosing
markers as closely spaced as possible.

In general, the decrease in probability of detecting
association is not linear with distance; this probabil-
ity tends to be relatively constant across patches of the
genome known as ”haplotype blocks”. Thus one can save
considerably on the cost of a mapping project by choos-
ing no more than one marker from each haplotype block.
Generally, the exact boundaries of haplotype blocks are
not known prior to project execution, but it is often pos-
sible to assume that all haplotype blocks are of the same
constant length s.

One typically searches for a marker-disease linkage
within a given locus, or possibly set of locuses, of the
genome. For purposes of this paper, a ”locus” is any
linear segment of the genome; in practice, a locus is
typically fifty kilobases (kb) to several megabases (Mb).
Each locus can be considered independently.

The locations of genetic markers are known prior to
project initiation. In general, the number of known ge-
netic markers exceeds the number necessary and/or af-
fordable for a project. Thus, prior to project initiation,
one is faced with the task of selecting a subset of markers
from this initial library of markers. This paper presents
algorithms for the solution of this selection task.

Markers in the library will have been previously char-
acterized to a lesser or greater extent. A marker may be
listed in error such that there is not in reality a marker at
that position in the genome. A marker may be present in
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some genomes within a population of individuals, but so
infrequently that it is of limited use for linkage studies.
A marker may be at a position biochemically difficult to
assay. A marker may be intellectual property, and have a
licensing fee. All of these factors, which are either known
or can be estimated, need to be considered during the
selection of a set of markers from the library. We con-
sider these factors weighted together as the ”quality” of
a marker. A ”single nucleotide polymorphism” (SNP)
is a particular kind of marker. SNPs are currently the
most popular marker [1]. This paper assumes markers
are SNPs, but extensions would permit inclusion of other
markers.

One thus wishes to choose a set of SNPs from the
library that meets the following criteria: (1) there is
at least one SNP per haplotype block, to maximize the
probability of detecting disease linkage, (2) there are as
few SNPs as possible, to minimize cost, (3) the SNPs are
uniformly distributed over the locus, and (4) the SNPs
are of as high quality as possible, to minimize the need
to choose between replacing a useless SNP or proceeding
with a gap in the selected set.

2 Problem Formulation

The optimization problem described above can be stated
formally as follows. Let n be the length of the locus
under consideration and m be the number of available
SNPs where each SNP i is described by two attributes:

pi = position (pi ∈ IN, 1 ≤ pi ≤ n)
qi = quality (qi ∈ IR, qi > 0)

The attribute pi denotes the position of the correspond-
ing SNP. We here assume that the SNPs are ordered and
unique according to the position, i.e., p1 < p2 < . . . <
pm. The quality of a SNP is represented by a positive
real number qi; a larger value stands for higher quality.
Furthermore, the length of the haplotype blocks is de-
noted as s. It can be considered as the optimal distance
between two consecutive SNPs within a SNP selection.

A solution to the problem, a non-empty subset of the
available SNPs, can be expressed in terms of m decision
variables xi ∈ {0, 1} with xi = 1 if and only if SNP i is
in the subset. For convenience, we introduce in addition
the variables x0 and xm+1 which are by definition set
to 1 and refer to two fictive SNPs that mark the left
(position 0) and the right end (position n + 1) of the
locus. Now, consider the deviation dij of the distance



between two SNPs from the optimal distance s:

dij = (s − |pj − pi|) · xi · xj ·
j−1∏

k=i+1

(1 − xk)

If the SNPs i and j are direct neighbors regarding the
selected SNP subset, then dij gives the number of posi-
tions enclosed by them; otherwise, dij equals 0. Given
this notation, the goal is to minimize the average devia-
tion from the ideal gap length s

f1(x1, x2, . . . , xm) =
1

1 +
∑m

i=1 xi

m∑

i=0

m+1∑

j=i+1

dij

while maximizing the average quality

f2(x1, x2, . . . , xm) =
1∑m

i=1 xi

m∑

j=1

qi · xi

under the constraint that all gaps are less than or equal
to s, i.e.,

∀ 0 ≤ i ≤ m ∀ i < j ≤ m + 1 : dij ≤ s

For certain problems, it may not be possible to fulfill
the constraint, i.e., there is a pair of SNPs i and j with
dij > s even if all m SNPs are selected. In this case, the
problem can be divided into separate subproblems which
can be solved independently. The algorithms presented
in the following automatically take this into account.

3 Implementation

In this study, we use SPEA2 [2], a state-of-the-art mul-
tiobjective evolutionary algorithm, to approximate the
Pareto-optimal set of this problem. The core imple-
mentation is based on ECJ8, a Java-based Evolution-
ary Computation and Genetic Programming Research
System [3]. It has been substantially extended to im-
plement SPEA2, which includes multiobjective specific
operations such archiving, breeding selection, etc.

Each individual is encoded as a bitstring of length
m, where the ith bit corresponds to the decision vari-
able xi. Individuals are recombined on the basis of the
uniform crossover operator (the probability of recombi-
nation is set to 0.8) and modified according to a simple
bitflip mutation using a mutation rate of 4/m, following
recommendations in [4]. Furthermore, a repair mecha-
nism is incorporated that ensures each individual to be
feasible. Whenever there are two SNPs i, j with i < j
such that di,j > s, then a SNP k with di,k ≤ s is in-
serted such that di,k is maximum. The repair mecha-
nism is only needed for calculating the objective values;
the post-optimized bitstrings do not replace the original
ones. Finally, the individuals in the initial population
are created randomly such that in average the number
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Figure 1: Alternative solutions generated by the evolu-
tionary algorithm (represented by the plus symbol). The
asterisk stands for the solution found by the heuristic.

of selected SNPs equals the number of haplotype blocks
per locus (n

s ). Both population and archive size are set
to 250.

As an alternative to compare with SPEA2, we devel-
oped a heuristic that generates a single solution to the
problem by putting more emphasis on the first over the
second objective. It first tries to choose SNPs of the
highest quality such that the number of gaps that are
greater than s is minimized. Afterwards, a local opti-
mization step aims at improving the distribution of the
chosen SNPs. If the resulting solution does not meet the
constraint, then the above procedure is repeated for the
SNPs of second highest quality, and so forth.

4 Results

The algorithms were tested for a target sequence that is
a 90kb segment of the human major histocompatibility
locus. The library contained 626 SNPs (cf. Fig. 2).

The trade-off front generated by the evolutionary al-
gorithm after 200 generations is depicted in Fig. 1. The
density of solutions increases as the first objective in-
creases. This illustrates the structure of the solution
space for this particular problem. The heuristic solu-
tion represents a trade-off that neither dominates nor is
dominated by any SPEA2 solution, and is located in the
middle of the front rather than on one of its extremes.

Fig. 2 shows some selected solutions. The one best in
the first objective contains only 35 SNPs with an average
quality of 117. The other extreme solution includes 85
SNPs and achieves an average quality of 181; basically
all high quality SNPs are chosen and the large gaps are
filled by SNPs of lower quality.
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Figure 2: Comparison of heuristic solution with selected trade-offs generated by the evolutionary algorithm. The
vertical lines represent the chosen SNPs with the height reflecting their quality. The top most tiling path on the
figure is the total set of SNPs available. The shaded bar above each tiling path indicates varying degrees of spacing
fitness. The darker the shading the farther the distance between the two SNPs is from the optimal distance s.

5 Conclusions

This new application demonstrates the usefulness of evo-
lutionary algorithms in the presence of multiple opti-
mization criteria. Firstly, an evolutionary-based ap-
proach allows generation of a set of trade-off solutions
which provide additional information about the problem,
such as the magnitude of the conflict between objectives,
whether there are many or few potential solutions, and
the structure of the search space. Knowing which alter-
natives are available can strengthen the confidence in the
choice of a particular solution. Secondly, an evolution-
ary algorithm provides flexibility. Additional objectives
and constraints can be incorporated with only little pro-
gramming effort. For instance, in the future we may split
the one quality objective into several, as stated in the in-
troduction, such that a more accurate model is possible.

Finally, deterministic heuristics tailored to the appli-
cation at hand often produce reasonably good results if
sufficient problem knowledge is available. With the SNP
selection problem, the solution found by the heuristic
neither is dominated nor dominates any of the trade-
offs generated by SPEA2. However, the design of these
heuristics gets more difficult as more objectives are in-
volved, and the single solution produced does not pro-
vide information about alternative solutions. In general,
a promising way to tackle complex multiobjective opti-
mization problems is to combine both approaches into a
single algorithm.
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